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ABSTRACT

We introduce the canonical-boundary representation and study its range.

This conjugacy invariant homomorphism captures information about the

symmetry of the Markov shift near its (canonical) boundary and exhibits

which actions on the boundary can be realized by automorphisms.

The path-structure at infinity — a relation on the set of orbits of the

canonical boundary — is a new conjugacy invariant, which is stronger

than the canonical boundary and the periodic data at infinity. More-

over we determine its influence on the range of the canonical-boundary

representation and the extendability of automorphisms from subsystems

(ascending sequences of shifts os finite type (SFTs) and infinite subsets

of periodic points) to the entire Markov shift.

1. Preliminaries, outline and notations

We started to investigate the properties of the automorphism groups of topolog-

ical countable state Markov shifts in [7] and [8]. Beside the direct methods used

there one may focus on the study of the automorphism group via representations

and group actions.

Just as in the SFT-case there are the well-known periodic-point and periodic-

orbit representations mapping the group Aut(σ) of all shift commuting self-

homeomorphisms into a direct product of countably many symmetric groups

SPer0n(σ) or SOrbn(σ) (n ∈ N). These representations, first introduced by

M. Boyle and W. Krieger [1], assign to any automorphism respectively its action
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on the set of periodic points or periodic orbits and are thus faithful (or almost

faithful with kernel 〈σ〉) for subshifts with dense periodic points. The only dif-

ference for subshifts on a countably infinite alphabet is the possibility to have

infinitely many periodic points/orbits for a given period and so the symmetric

group on countably many objects may show up in the direct product.

As we have seen in [8] the automorphism groups of countable state Markov

shifts have a very complicated structure, so instead of (almost) injective homo-

morphisms one would rather look at representations that suppress part of this

complexity but still yield useful information about the subshift. To this end

we define a new representation of Aut(σ) for locally compact countable state

Markov shifts which records information about the structure of the subshift near

its boundary, thus this may be regarded a line of vision from outside the system

to some extent.

Since every automorphism of some locally compact countable state Markov

shift extends onto the canonical compactification — its explicit construction is

reviewed in Section 2 — originally defined by D. Fiebig and U.-R. Fiebig in [3],

thinking of the canonical boundary as a compact-metric dynamical system in its

own right, yields a homomorphism from the automorphism group of the Markov

shift into the much smaller and simpler automorphism group of this boundary

system. We coined the term canonical-boundary representation for this new

invariant of topological conjugacy.

In Section 3 we show that this representation reflects the operation of any

automorphism near the boundary. Its kernel contains all automorphisms acting

on points via the modification of symbols from some finite subset of the alphabet

only (i.e. all coordinates with symbols not inside this finite set stay unchanged).

Its image can be stated explicitly in various examples. Non-surjectivity exhibits

restrictions emanating from the subshift’s structure at infinity: With increasing

symmetry the image grows larger, whereas for thinned-out Markov shifts (and

many other examples) it is forced to be minimal (Prop. 3.5), due to a lack

of symmetry. Further restrictions on the image stem from the fact that any

automorphism has to respect the period of its subshift (Theo. 3.6), hence two

orbits of the canonical boundary cannot be rotated by a distinct amount modulo

this period and the distances between pairs of preimages and corresponding

image points have to coincide modulo the subshift’s period. Moreover we prove

the canonical-boundary representation to be an invariant much finer than the

canonical boundary or the periodic data at infinity (see Section 3 for exact

definitions).
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In Section 4 we introduce a binary relation on the orbits of the canonical

boundary, at first given in terms of a graph presentation. It describes the path-

structure near any of the boundary-orbits and can be interpreted as a refinement

of transition entropy. We prove independence of the graph presentation, so this

relation yields a new invariant and we state some condition necessary for the ex-

istence of a topological conjugacy between two locally compact countable state

Markov shifts in terms of this path-structure relation (Theo. 4.2). Since au-

tomorphisms are self-conjugacies from a subshift onto itself, we can use this

condition to further restrict the image of the canonical-boundary representa-

tion. Rounding off the paper we present two model applications of our results:

Example 4.4 shows that not every permutation — compatible with the action of

the shift and with some necessary conditions concerning convergence of periodic

points to boundary points — on an infinite set of periodic points of fixed but

arbitrary period length can be realized as the restriction of some automorphism

of the locally compact Markov shift. Therefore the general LIFT-hypothesis

for periodic points, asking whether all actions on subsets of periodic points

that satisfy all obvious constraints can be extended to automorphisms of the

whole subshift (see [2] Section 7 and [4]), does not hold. As a second appli-

cation (Ex. 4.5) we disprove the corresponding LIFT-hypothesis for sequences

of embedded compact subshifts (even for SFTs), i.e. we show that in general a

projective sequence of automorphisms, acting on a nested sequence of embed-

ded compact subshifts/SFTs whose union is dense inside the locally compact

Markov shift under consideration, cannot be extended to an automorphism of

the whole Markov shift, even if the automorphisms in this sequence do not

violate any conditions posed by the canonical boundary.

We give a short introduction to the notions used in this paper. For a general

overview in symbolic dynamics have a look at the books by B. Kitchens [5] or

by D. Lind and B. Marcus [6].

Let AZ denote the set of bi-infinite sequences over a countably infinite al-

phabet A. AZ endowed with the product topology of the discrete topology

on A is a non-compact, totally disconnected, perfect metric space. The shift

map σ: AZ → AZ, σ((xi)i∈Z) := (xi+1)i∈Z is a homeomorphism inducing the

dynamics on AZ.

Any shift-invariant subset X ⊆ AZ endowed with the subspace topology gen-

erated by the countable set of clopen cylinders

n[a0 . . . am] := {(xi)i∈Z ∈ X | ∀0 ≤ i ≤ m : xn+i = ai} (n ∈ Z, m ∈ N0)

yields a subshift (X, σ).
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Two subshifts (X1, σ1), (X2, σ2) are (topologically) conjugate, if there exists

a shift commuting homeomorphism γ: X1 → X2. Pres(X) denotes the set of

presentations of the subshift (X, σ), i.e. the set of all subshifts conjugate to

(X, σ).

A subshift (X, σ) is called a countable state Markov shift, if its set of presen-

tations contains an edge shift (XG, σ) on some directed graph G = (V, E) with

|E| = ℵ0 and σ acting on the set

XG :=
{
(xi)i∈Z ∈ EZ | ∀i ∈ Z : t(xi) = i(xi+1)

}

of bi-infinite walks along the edges of G. Here i, t: E → V are the initial and

terminal vertex maps on the edge set E.

A countable state Markov shift (X, σ) is locally compact, if and only if X

is locally compact, if and only if any (every) cylinder set is compact, if and

only if for any (every) graph presentation (XG, σ) the graph G is locally finite.

Furthermore, (X, σ) is (topologically) transitive, if and only if X is irreducible,

if and only if G is strongly connected.

A map ϕ: X → X is called an automorphism of (X, σ), if ϕ is a shift commut-

ing homeomorphism from X onto itself. Obviously the set of automorphisms

forms a group Aut(σ), which is a conjugacy invariant reflecting the inner struc-

ture and symmetries of the subshift.

2. Short review of the canonical compactification

We briefly recall the construction of the canonical compactification for locally

compact Markov shifts given in [3]. It is the unique maximal element within the

set of all metric compactifications whose boundary is an inverse limit of finite

dynamical systems ([3], Theo. B(a)). The boundary is a conjugacy invariant

([3], Cor. 3.6(b)) capturing a good deal of the properties of the Markov shift ’at

infinity’ and can be built up from any graph presentation in the following way:

Let (X, σ) be some transitive, locally compact countable state Markov shift

presented as an edge shift on some locally finite directed graph G = (V, E). After

removal of a finite set K ( E of edges the remaining graph G−K := (V, E \K)

decomposes into a finite set of infinite, maximal connected subgraphs called

components C(G −K) and a finite (possibly not connected) remnant, which is

not considered in the following. In contrast to the strong connectedness of G

the components are assumed merely connected, i.e. any pair of vertices from

one component can be connected via a path in the undirected graph underlying

that component.
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For any component H = (VH , EH) ∈ C(G − K) we define the weighted

period perw(H) as the greatest common divisor of the weights of all loops

in the undirected graph underlying H . The weight of such an undirected

loop e1, e2, . . . , en ∈ EH ; v1, v2, . . . , vn ∈ VH with {i(ek), t(ek)} = {vk, vk+1}

for k ∈ {1, 2, . . . , n− 1} and {i(en), t(en)} = {vn, v1} is the sum of all edge-

weights wk, where wk := 1 if and only if i(ek) = vk and wk := −1 otherwise

(k ∈ {1, 2, . . . , n}).

We point out that for general directed graphs G the weighted period perw(G)

may differ from the period per(G) defined as the greatest common divisor of the

lengths of all directed loops in G (perw(G) can be a proper divisor of per(G)).

However both notions coincide for strongly connected graphs — see Lemma 2.1.

Thus as our subshifts are assumed transitive, we do not have to distinguish

between the weighted period and the usual period of the whole graph (see

Theo. 3.6); but we do have to distinguish between these notions if considered

for components.

Lemma 2.1: For strongly connected graphs G = (V, E) the weighted period

perw(G) equals the usual period

per(G) := gcd{n ∈ N | ∃ directed loop of length n in G}.

Proof: Denote the set of all weights appearing between u ∈ V and v ∈ V with

WG(u, v) := {w ∈ Z | ∃ undirected path of weight w connecting u and v}. As

G is connected, WG(v, v) is independent of v ∈ V and perw(G) is a generator

for this ideal, i.e. WG(v, v) = perw(G) · Z.

Every directed loop at v of length n ∈ N has weight n, so n ∈WG(v, v). Run-

ning through such a loop in reversed direction yields −n ∈WG(v, v); concatena-

tions finally show n · Z ⊆ WG(v, v). So gcd{n ∈ N | ∃ directed loop of length n

in G} · Z ⊆ perw(G) · Z, which is equivalent to perw(G)| per(G).

For the opposite use that G is strongly connected: Take an undirected, closed

path p of weight perw(G). p can be divided into directed subpaths p1, p2, . . . , pn

(n ∈ N) that are oriented alternatingly (w.l.o.g. let p1 count positive), that is

t(p1) = t(p2); i(p2) = i(p3); . . . ; f(pn) = i(p1) with f(pn) :=

{

i(pn) iff n ≡ 0 (2)

t(pn) iff n ≡ 1 (2)

Then the total weight is the alternating sum of their lengths:

perw(G) = |p1| − |p2|+ |p3| − · · ·+ (−1)n−1 |pn| .
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For every subpath p2i (i ∈
{
1, 2, . . . ,

⌊
n
2

⌋}
) choose a directed path p′2i con-

necting i(p′2i) = t(p2i) to t(p′2i) = i(p2i). Obviously per(G)|(|p2i| + |p′2i|).

Now q := p1p
′
2p3p

′
4 · · · p

(
n
′) is a directed loop, so per(G)| |q|. The result follows

from putting together all the relations:

per(G)|(|p1|+ |p
′
2|+ |p3|+ · · ·+ |p

(

n
′)|

︸ ︷︷ ︸

|q|

)−

⌊n
2 ⌋∑

i=1

(|p2i|+ |p
′
2i|) = perw(G).

To construct the canonical boundary choose an ascending sequence

K1 ⊆ K2 ⊆ K3 ⊆ · · · of finite subsets in E, such that
⋃

n∈N
Kn = E. This gives

a sequence of finite dynamical systems (An, θn)

An := {(H, i)|H ∈ C(G−Kn) ∧ 0 ≤ i < perw(H)}

θn: An → An θn((H, i)) := (H, (i + 1)modperw(H))

containing for every component H ∈ C(G−Kn) one periodic θn-orbit of length

perw(H).

As the sequence (Kn)n∈N of subsets is ascending one has for any component

H ∈ C(G − Kn+1) a unique component H ′ ∈ C(G − Kn) containing H . This

yields projections πn: An+1 → An, πn((H, i)) := (H ′, i modperw(H ′)) gluing

together all the (An, θn).

It is easy to check perw(H), perw(H ′) > 0 and perw(H ′)| perw(H) (see

Lemma 3.2 and the adjacent text in [3]), thus the commutation relation

πn ◦ θn+1 = θn ◦ πn is valid for any n ∈ N.

The inverse limit induced by the projections (πn)n∈N on ((An, θn))n∈N gives

a dynamical system (Z(X, (Kn)n∈N), ΘX) — the canonical boundary of (X, σ):

Z(X, (Kn)n∈N) := {((Hn, in) ∈ An)n∈N|∀n ∈ N : πn((Hn+1, in+1)) = (Hn, in)}

ΘX : Z(X, (Kn)n∈N)→ Z(X, (Kn)n∈N), ΘX((Hn, in)n∈N) := (θn(Hn, in))n∈N

Put on
∏

n∈N
An the product topology of the discrete topologies on the finite sets

An, then Z(X, (Kn)n∈N) ⊆
∏

n∈N
An equipped with the induced subspace topol-

ogy becomes a compact-metric space and ΘX is a homeomorphism. Lemma 3.4

in [3] shows that the dynamical system (Z(X, (Kn)n∈N), ΘX) is in fact indepen-

dent of the choice of the sequence (Kn)n∈N, so we use the shorthand (Z(X), ΘX).

Attaching (Z(X), ΘX) as a boundary to the transitive, locally compact count-

able state Markov shift (X, σ) we get the canonical compactification (X̂, σ̂) with

X̂ := X∪̇Z(X) and σ̂: X̂ → X̂ such that σ̂|X := σ, σ̂|Z(X) := ΘX .
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This gluing is done by means of an intrinsic factor map g: X → Z(X)

defined as follows: Choose an edge e ∈ E, put gG(e) := 0 and extend this

to a periodic labeling gG: E → {0, 1, . . . , perw(G)− 1} via gG(f1) + 1 ≡

gG(f2)mod perw(G) for all f1, f2 ∈ E with t(f1) = i(f2). For every com-

ponent H ∈ C(G − Kn) (n ∈ N) there exists a maximal-periodic labeling

gH : EH → {0, 1, . . . , perw(H)− 1} such that gH(e) ≡ gG(e)mod perw(G) for

all e ∈ EH and in addition these labelings form a projective family, i.e., respect

the subgraph relation:

∀H ∈ C(G−Kn+1), H
′ ∈ C(G−Kn): H ⊆ H ′

=⇒ ∀e ∈ EH : gH(e) ≡ gH′(e)mod perw(H ′)

This yields a locally constant map g; for all x ∈ X with x0 ∈ K1 put g(x) := z∗

for an arbitrary z∗ ∈ Z(X, (Kn)n∈N). Otherwise let n := max {i ∈ N | x0 /∈ Ki}

and H ∈ C(G−Kn) the unique component containing x0 ∈ EH and set g(x) := z

for some z ∈ Z(X, (Kn)n∈N) with zn = (H, gH(x0)). For the details in this

construction the reader is referred to the original paper [3].

Finally we remark that the topology on (X̂, σ̂) is given by an — up to uniform

equivalence — unique (canonical) metric d̂: X̂ × X̂ → R, which according to [3]

can be presented as:

d̂(x, y) := d0(π(x), π(y)) + ρ(ĝ(x), ĝ(y)) ∀x, y ∈ X̂

Here d0: X0×X0 → R denotes the Gurevich metric on the 1-point-compactifi-

cation (X0, σ0); π: X̂ → X0, π|X := IdX , π(Z(X)) := {∞} is the projection of

the canonical onto the 1-point-compactification collapsing the canonical bound-

ary Z(X) down to the point ∞; ρ: Z(X) × Z(X) → R denotes any metric

compatible with the topology on (Z(X), ΘX) and ĝ: X̂ → Z(X), ĝ|X := g,

ĝ|Z(X) := IdZ(X) is the extension of the intrinsic factor map g.

3. The canonical-boundary representation

As we have seen in the previous section the canonical compactification and

hence the canonical boundary are invariants. One of the main results of [3]

(Theo. B(b)) states that every topological conjugacy between two transitive, lo-

cally compact countable state Markov shifts is even uniformly continuous with

respect to the corresponding metrics d̂ as defined above. Therefore each can

be extended in exactly one way to a conjugacy between the canonical com-

pactifications. Obviously this implies the unique extendability of any automor-

phism onto the canonical compactification, i.e. there is a canonical embedding
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ε: Aut(σ) →֒ Aut(σ̂), ϕ 7→ ϕ̂ with ϕ̂|X = ϕ from the automorphism group of

the Markov shift (X, σ) into that of its canonical compactification (X̂, σ̂).

Since any automorphism in ε(Aut(σ)) leaves X ( X̂ invariant, we may re-

strict its action to the complement Z(X) = X̂ \X , to get an automorphism of

the boundary system (Z(X), ΘX). Composition of ε with this restriction map

π: ε(Aut(σ))→ Aut(ΘX), ϕ̂ 7→ ϕ̂|Z(X) yields a homomorphism β := π ◦ ε from

Aut(σ) into the smaller and often simpler automorphism group Aut(ΘX) of the

canonical boundary interpreted as a compact-metric dynamical system. One

easily checks that β(ϕ ◦ φ) = β(ϕ) ◦ β(φ) and β(IdX) = IdZ(X). This gives the

desired representation of Aut(σ):

Definition 3.1: Let (X, σ) be a transitive, locally compact countable state

Markov shift. The map β: Aut(σ) → Aut(ΘX), ϕ 7→ ϕ̂|Z(X) with ϕ̂ ∈

Aut(σ̂) the unique extension of ϕ onto the canonical compactification is called

canonical-boundary representation of Aut(σ). Moreover β is a well-defined,

conjugacy invariant group homomorphism.

Remark 3.2: Since the canonical compactification is the unique maximal ele-

ment in the class of all metric compactifications having a boundary which is an

inverse limit of finite dynamical systems (see [3], Theorem B(a)) the canonical-

boundary representation resolves the inner structure of the Markov shift best

possible. All other boundary representations would be coarser. This can be illus-

trated by the other ‘extreme’ compactification: Due to uniform continuity with

respect to the Gurevich metric d0 any automorphism of a locally compact count-

able state Markov shift (X, σ) can be extended to its 1-point-compactification

(X0, σ0), but the corresponding homomorphism β0: Aut(σ) → Aut(Id∞) =

{Id∞} would be trivial and thus does not contain any useful information about

the structure of (X, σ) near the boundary.

Now we start to investigate the properties of β. Obviously this homomorphism

is not faithful; since many locally compact countable state Markov shifts have

canonical boundaries consisting of finitely many periodic ΘX-orbits, Aut(ΘX)

may be finite, whereas Aut(σ) is at least countably infinite ([8] Theo. 2.4). So in

general β has to collapse automorphisms. Another fact immediately destroying

injectivity is that the kernel of the canonical-boundary representation contains

all automorphisms ϕ ∈ Aut(σ) acting just on a finite subset of symbols, i.e. it

exists F ( A finite, such that for all x /∈
⋃

f∈F 0[f ] the zero-coordinate of x

stays unchanged under the action of ϕ:
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Proposition 3.3: Given a locally compact countable state Markov shift (X, σ),

every automorphism acting exclusively on a finite subset of symbols from the

alphabet A induces the identity on the canonical boundary. Therefore all those

automorphisms are elements of ker(β).

Proof: Let F ( A finite such that (ϕ(x))0 = x0 for all x ∈ X with x0 /∈ F and

denote by (x(n))n∈N a sequence of points x(n) ∈ X converging with respect to

the d̂-metric to some boundary point z ∈ Z(X). Thus

0 = lim
n→∞

d̂(x(n), z) = lim
n→∞

d0(π(x(n)), π(z)) + ρ(ĝ(x(n)), ĝ(z))

= lim
n→∞

d0(x
(n),∞) + ρ(g(x(n)), z)

implies limn→∞ d0(x
(n),∞) = 0, i.e., for n big enough larger and larger blocks

x
(n)
[−jn,jn] ((jn)n∈N an eventually increasing sequence of natural numbers) avoid

F . Using the assumption for |i| ≤ jn yields:

(ϕ(x(n)))i = (ϕ(σi(x(n))))0 = x
(n)
i /∈ F.

The triangle-inequality for d̂ and the continuity of ϕ̂ used in the following in-

equality

lim
n→∞

d̂(x(n), ϕ̂(z)) ≤ lim
n→∞

d̂(x(n), ϕ̂(x(n)))
︸ ︷︷ ︸

→0

+ d̂(ϕ̂(x(n)), ϕ̂(z))
︸ ︷︷ ︸

→0

= 0

finally give convergence of (x(n))n∈N to ϕ̂(z) forcing ϕ̂|Z(X) = IdZ(X).

Examples of automorphisms satisfying Proposition 3.3 are finite compositions

of 1-block-automorphisms that permute all occurrences of symbols correspond-

ing to a multi-edge in the graph. (A multi-edge is a finite set of edges connecting

a common initial to a common terminal vertex.)

Next we study the image β(Aut(σ)) ≤ Aut(ΘX) of the canonical-boundary

representation. This tells us, which actions on the boundary system can be

realized by automorphisms of the Markov shift. The size of β(Aut(σ)) is related

to the inner symmetry of the subshift (X, σ) near its boundary. Surjectivity

signals the absence of further restrictions, whereas a lack of surjectivity reflects

some kind of rigidness inside the Markov shift that does not surface in the

boundary.

Of course such restrictions can only exist if the canonical boundary comprises

more than one ΘX-orbit, since ΘX = σ̂|Z(X) implies 〈ΘX〉 ≤ β(Aut(σ)) and
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Aut(ΘX) = 〈ΘX〉 for boundaries (Z(X), ΘX) with just one ΘX -orbit. The cor-

responding transitive, locally compact countable state Markov shifts are char-

acterized by the property that removing some finite set of edges K ( E from

any (every) graph presentation G = (V, E) yields just one infinite connected

component in G − K, i.e., there is only one direction coming from or going

to infinity in G. An example is the topological random walk on N (e.g. with

stepsize 0,±1).

In general transitive, locally compact countable state Markov shifts with a

canonical boundary comprising more than one ΘX -orbit do put strong restric-

tions on the boundary-automorphisms. This prohibits β from being surjective.

To show this look at the class of thinned-out Markov shifts first considered in [8]:

Definition 3.4: A transitive, locally compact countable state Markov shift is

called thinned-out, if and only if it is conjugate to an edge shift on some

(strongly connected, locally finite, directed) graph G = (V, E) with |E| = ℵ0

containing a vertex v ∈ V such that the set Lv := {ln | n ∈ N} of first-return

loops at v satisfies

(GC) ∀M ∈ N0∃N ∈ N ∀n ≥ N : |ln+1| − |ln| > M.

All thinned-out Markov shifts have such a rigid structure that there are no

symmetries left near the boundary. This shows up immediately in the small size

of β(Aut(σ)):

Proposition 3.5: For every thinned-out Markov shift (X, σ) the image of the

canonical-boundary representation is minimal, i.e. β(Aut(σ)) = 〈ΘX〉 ∼= Z. In

particular this result does not depend on the size or structure of the canonical

boundary.

Proof: Since β is a conjugacy invariant, assume (X, σ) to be presented as an

edge shift on some thinned-out graph G = (V, E) satisfying (GC) for v ∈ V .

From Theo. 6.4 in [8] one knows that the automorphism groups of thinned-out

Markov shifts split into a direct sum Aut(σ) = 〈σ〉⊕H , where H consists exactly

of those automorphisms φ ∈ Aut(σ) that act on the orbit-complement of some

finite subset Kφ ( E of edges like the identity.

Denote by Fφ := {e ∈ E | ∃k ∈ Kφ, l ∈ Lv : k ∈ l ∧ e ∈ l} the set of all edges

from first-return loops at v, that are marked by the edges in Kφ. As only finitely

many elements in Lv are marked by Kφ (see [8], Lemma 7.4), Fφ is finite.
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To prove H ≤ ker(β) take φ ∈ H and choose a sequence (x(n))n∈N of points

x(n) ∈ X converging to an arbitrary boundary point z ∈ Z(X) with respect to

d̂. This implies the convergence limn→∞ d0(x
(n),∞) = 0 which forces eventually

larger and larger blocks x
(n)
[−jn,jn] ((jn ∈ N)n∈N eventually increasing) to avoid

the set Fφ and hence all Kφ-marked first-return loops at v.

W.l.o.g. the sequence (x(n))n∈N may be replaced by some sequence

(y(n) ∈ X)n∈N with y
(n)
[−jn,jn] = x

(n)
[−jn,jn], still converging to z but completely

avoiding the set Kφ (and thus also the finite subset of first-return loops at v

being marked by Kφ) for large n ∈ N. That is eventually all points y(n) are

elements of the orbit-complement Orb(Kφ)∁ := X \
⋃

n∈Z
σn(

⋃

k∈Kφ
0[k]). Now

φ|Orb(Kφ)∁ = IdOrb(Kφ)∁ implies φ(y(n)) = y(n) for n ∈ N large enough and

continuity of the extension φ̂ ∈ Aut(σ̂) gives:

lim
n→∞

d̂(y(n), z) = 0 =⇒ 0 = lim
n→∞

d̂(φ̂(y(n)), φ̂(z)) = lim
n→∞

d̂(y(n), φ̂(z)).

Therefore, φ̂(z) = z for all z ∈ Z(X) and φ ∈ ker(β).

The above mentioned direct sum decomposition yields a unique representation

ϕ = σi ◦ φ with i ∈ Z and φ ∈ H for every ϕ ∈ Aut(σ). As desired one gets

β(ϕ) = β(σi ◦ φ) = β(σ)i ◦ IdZ(X) = ΘX
i ∈ 〈ΘX〉, i.e. β(Aut(σ)) ≤ 〈ΘX〉. To

show the contrary, observe that every element ΘX
i ∈ 〈ΘX〉 has σi ∈ Aut(σ) as

a preimage.

Finally 〈ΘX〉 ∼= Z for thinned-out Markov shifts, since, otherwise, the se-

quence of weighted periods (perw(Hn))n∈N would be bounded for every bound-

ary point z = (Hn, in)n∈N ∈ Z(X) in contradiction to (GC).

The following theorem shows that the extension of any automorphism onto the

canonical compactification has to respect the period of the subshift. The action

on the canonical boundary has to be uniform in the sense that all ΘX-orbits

are rotated by the same degree and distinct boundary points have the same

distance (with respect to the maximal-periodic labelling) modulo the subshift’s

period as their image points. This further restricts the image of β.

Theorem 3.6: Denote by G = (V, E) some graph presentation of a transitive,

locally compact countable state Markov shift (X, σ). Let the canonical boundary

(Z(X), ΘX) be defined via a sequence (Kn)n∈N (∀n ∈ N : Kn ⊆ Kn+1 ( E

finite;
⋃

n∈N
Kn = E) as described in Section 2. For any four boundary points

zj = (H
(j)
n , i

(j)
n )n∈N ∈ Z(X) (j ∈ {1, 2, 3, 4}) and any automorphism ϕ ∈ Aut(σ)

with ϕ̂(z1) = z3 and ϕ̂(z2) = z4 it follows that i
(3)
1 −i

(1)
1 ≡ i

(4)
1 −i

(2)
1 mod per(G).
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Proof: W.l.o.g. let all Kn (n ∈ N) be edge sets of strongly connected

subgraphs of G and assume there is an edge e ∈ K1 with gG(e) = 0. Here

g: X → Z(X) is the intrinsic factor map used to attach Z(X) to X and

gG: E → {0, 1, . . . , per(G) − 1} denotes the corresponding maximal-periodic

labeling.

As each edge subset Kn is strongly connected there exists some right-infinite

ray r := r1r2r3 · · · starting at t(e) and running directly through the infinite

components H
(1)
n , i.e., there is an increasing sequence (sn ∈ N)n∈N such that

ri ∈ E
H

(1)
n
\ E

H
(1)
n+1

for all sn ≤ i < sn+1. Akin choose a left-infinite ray

w := · · ·w−3w−2w−1 which ends at i(e) such that there exists some increasing

sequence (tn ∈ N)n∈N with w−i ∈ E
H

(2)
n
\ E

H
(2)
n+1

for all tn ≤ i < tn+1.

Concatenating these with e defines a point

x := · · ·w−3w−2w−1.er1r2r3 · · · ∈ X.

Now for every n ∈ N there is an index k ∈ N such that (σk(x))0 ∈ E
H

(1)
n

and

g
H

(1)
n

((σk(x))0) = i
(1)
n . By construction of r the σ-forward orbit of x contains

some sequence (σkn(x))n∈N (kn ∈ N for all n ∈ N) of points converging to z1 with

respect to d̂. Moreover, eventually all elements of this sequence are elements in

O+(x) := {σk(x)|k ∈ N ∧ k ≡ i
(1)
1 mod per(G)} because g

H
(1)
1

((σk(x))0) = i
(1)
1

is possible only for k ≡ i
(1)
1 mod per(G). Using the same argument on w yields

a sequence (σ−jn(x))n∈N (jn ∈ N for all n ∈ N) which converges to z2 and

is eventually contained in O−(x) := {σ−j(x)|j ∈ N ∧ −j ≡ i
(2)
1 mod per(G)}.

Due to the continuity of ϕ̂ at z3 = ϕ̂(z1) and z4 = ϕ̂(z2) one gets convergence

(ϕ(σkn(x)))n∈N

n→∞
−→ z3 and (ϕ(σ−jn (x)))n∈N

n→∞
−→ z4.

Therefore i
(3)
1 ≡ gG((ϕ(σkn (x)))0) ≡ gG((ϕ(x))0) + kn mod per(G)

and i
(4)
1 ≡ gG((ϕ(σ−jn (x)))0) ≡ gG((ϕ(x))0)− jn mod per(G)

for all n ∈ N large enough. Increasing n until σkn(x) ∈ O+(x) and σ−jn(x) ∈

O−(x) implies the congruence

i
(3)
1 − i

(1)
1 ≡ gG((ϕ(x))0) ≡ i

(4)
1 − i

(2)
1 mod per(G).

Corollary 3.7: Let (Z(X), ΘX) denote the canonical boundary of some tran-

sitive, locally compact countable state Markov shift (X, σ). It is not possible for

the extension of any automorphism to rotate two ΘX-orbits by distinct amounts

modulo the subshift’s period, that is, all ϕ ∈ Aut(σ) and z1, z2 ∈ Z(X) satisfy

(ϕ̂(z1) = σ̂i1(z1) ∧ ϕ̂(z2) = σ̂i2 (z2))⇒ i1 ≡ i2 mod per(X).
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Proof: The result follows directly from Theorem 3.6, since for k := 1, 2 one

has σ̂ik (zk) = (H
(k)
n , i

(k)
n + ik mod perw(H

(k)
n ))n∈N and per(X)| perw(H

(k)
n ) for

all n ∈ N.

Finally the actions induced on the canonical boundary by automorphisms of

the Markov shift have to respect the periodic data at infinity.

Definition 3.8: For any point z ∈ Z(X) in the canonical boundary (Z(X), ΘX)

of some transitive, locally compact countable state Markov shift (X, σ) denote

by Ω(z) := {k ∈ N|∃(x(n) ∈ Per0k(σ))n∈N : limn→∞ d̂(x(n), z) = 0} the periodic

data at infinity of z.

It is easy to check that the periodic data at infinity is a conjugacy invariant,

such that the Ω-sets of preimage and image points under a topological conjugacy

are equal. Obviously all the Ω-sets of boundary points belonging to the same

ΘX -orbit coincide. Therefore instead of the periodic data at ∞ of a single

boundary point we could speak of the periodic data at ∞ of the corresponding

ΘX -orbit.

Remark 3.9: We point out, that Definition 3.8 slightly differs from the orig-

inal notion ‘periodic data at infinity’ given by D. Fiebig and U.-R. Fiebig

in [3]. Instead of existence of a sequence of periodic points x(n) ∈ Perk(σ) :=
{
x ∈ X |σk(x) = x

}
of period k, we request

x(n) ∈ Per0k(σ) :=
{
x ∈ Perk(σ)|∀0 < j < k : σj(x) 6= x

}

to have least period k. This difference yields the possibility to prove certain

restrictions concerning the canonical-boundary representation, which are not

obvious from the original definition (see one of the examples below).

Proposition 3.10: An arbitrary point in the canonical boundary (Z(X), ΘX)

cannot be mapped to another boundary point by the extension of some auto-

morphism of the transitive, locally compact countable state Markov shift (X, σ),

if their periodic data at infinity do not coincide

∀z1, z2 ∈ Z(X) : (∃ϕ ∈ Aut(σ) : ϕ̂(z1) = z2)⇒ Ω(z1) = Ω(z2).

Proof: Suppose there is an automorphism ϕ ∈ Aut(σ) with ϕ̂(z1) = z2. For

any k ∈ Ω(z1) choose a sequence (x(n) ∈ Per0k(σ))n∈N converging to z1 with

respect to d̂. Its image (ϕ(x(n)))n∈N consists of elements in Per0k(σ) and due to

continuity of ϕ̂ converges to z2 = ϕ̂(z1), so k ∈ Ω(z2). The converse inclusion is

proved using ϕ−1 instead of ϕ.
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Figure 1. Graph presentations of two transitive, locally compact

countable state Markov shifts. Either canonical boundary consists

of two ΘX -orbits of length 2. The automorphism group of the bound-

ary system contains 8 elements.

To round off this section we explicitly determine the images of the canonical-

boundary representation for some examples using the results obtained so far:

First have a look at the Markov shifts (X, σ) presented in Figure 1 with

Aut(ΘX) ∼= {Id, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}

The image of β is pinned down to β(Aut(σ)) ∼= {Id, (12)(34), (13)(24), (14)(23)}

(the Kleinian-four-group) using Theorem 3.6. In both cases it is generated by

the shift map σ and the involutoric 1-block-code swapping the left and right

halves of each graph (ci ←→ c′i, di ←→ d′i, ei ←→ e′i). The other four

boundary-automorphisms in Aut(ΘX) do not satisfy the congruence relation

modulo per(X) and are thus excluded.

Next glue together one half of each of the two graphs in Figure 1 identifying

the vertices v = i(a) and v′ = i(d1). Once more this yields an edge shift

with canonical boundary consisting of two ΘX-orbits of length 2 and Aut(ΘX)

is the same 8-element group as before. But now there is a difference in the

periodic data at infinity for the two ΘX -orbits. The Ω-set for the ΘX -orbit

coming from the left graph in Figure 1 is empty, whereas the two boundary

points of the other half can be approximated by sequences of periodic points of

least period any positive, even integer (the Ω-set equals 2N). Hence following

from Proposition 3.10 the extension of any automorphism ϕ ∈ Aut(σ) has to

map each ΘX -orbit onto itself. Moreover both orbits cannot be rotated by a

different amount modulo 2 (= per(X)) according to Corollary 3.7. The inner

structure of this example is so rigid that the image of the canonical-boundary

representation β(Aut(σ)) =
{
IdZ(X), ΘX

}
= 〈ΘX〉 is as small as possible, being

generated by σ.
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Finally we show that our definition of the periodic data at infinity reveals

more restrictions than the original one: For this take the left graph in Figure 1

and attach to every vertex t(dn) one simple loop of length 2 and at every vertex

t(d′n) two such loops (n ∈ N). In the original definition of the periodic data

at ∞ the two ΘX -orbits cannot be distinguished; both Ω-sets equal 2N. With

our definition however the Ω-set for the left ΘX -orbit is still 2N but that of the

ΘX -orbit on the right contains just one element — the number 2. Therefore the

image of the canonical-boundary representation is again minimal.

As the canonical boundary is the same for all these examples the canonical-

boundary representation yields additional information about the Markov shift

and is a finer conjugacy invariant.

4. Comparability of the path-structure at ∞ – a new conjugacy in-

variant

We consider the set Orb(Z(X)) := Z(X)/〈ΘX〉 of ΘX -orbits of the canonical

boundary (Z(X), ΘX) of a transitive, locally compact countable state Markov

shift (X, σ). If Z(X) is constructed as in Section 2 via an ascending sequence

(Kn)n∈N of finite edge-subsets Kn ( E of some graph presentation G = (V, E),

the quotient map π: Z(X)→ Orb(Z(X)) is a formal projection

π((Hn, in)n∈N) := (Hn)n∈N

that drops the additional information coming from the periodic labeling. Like

the canonical boundary Z(X) the set of ΘX-orbits Orb(Z(X)) does not depend

on the choice of the sequence (Kn)n∈N.

A point x ∈ X is called forward-asymptotic to some ΘX -orbitO∈Orb(Z(X)),

if the distance between O and the σ-forward orbit of x tends to zero with

respect to the quotient-metric, i.e. inf{d̂(σn(x), z)|z ∈ O}
n→∞
−→ 0. Here d̂ denotes

the canonical metric as stated at the end of Section 2. x is called backward-

asymptotic to O, if inf{d̂(σ−n(x), z)|z ∈ O}
n→∞
−→ 0.

Now we define a binary relation on the ΘX -orbits of the canonical boundary.

This relation reflects the path-structure of some graph presentation near each

of the ΘX-orbits:

Definition 4.1: Let G1, G2 be two locally finite, strongly connected direc-

ted graphs with countably infinite edge-sets. Let the canonical boundaries

(Z(X1), ΘX1), (Z(X2), ΘX2) of the corresponding edge shifts X1, X2 be gen-

erated by ascending sequences (K
(1)
n )n∈N, (K

(2)
n )n∈N of finite edge-subsets.
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Some ΘX1 -orbit O1 = (H
(1)
n )n∈N ∈ Orb(Z(X1)) is called embeddable into

some ΘX2 -orbitO2 =(H
(2)
n )n∈N ∈Orb(Z(X2)) with respect to its path-structure

at infinity, if and only if:

For all points x, y ∈ X1 with x forward-asymptotic to O1 and y backward-

asymptotic toO1 and for every N ∈ N there exist natural numbers n1, n2 ≥ N

and indices i, j, k, l ∈ N satisfying i ≤ j, −k ≤ −l such that the infinite rays

x[i,∞) = xi · · ·xj · · · and y(−∞,−l] = · · · y−k · · · y−l run totally in H
(1)
n1 and

additionally there are edges e, f ∈ E
H

(2)
n2

that fulfill the following inequality

for all path-lengths m ∈ N:

#{b1 · · · bm|x[i,j]b1 · · · bmy[−k,−l] ∈ Bm̃+2(X1) ∧ ∀1 ≤ µ ≤ m : bµ ∈ E
H

(1)
n1

}

≤ #{b1 · · · bm̃|eb1 · · · bm̃f ∈ Bm̃+2(X2) ∧ ∀1 ≤ µ ≤ m̃ : bµ ∈ E
H

(2)
n2

}

where m̃ := m + (j − i) + (k − l) and Bm̃+2(X1), Bm̃+2(X2) denotes the set of

admissible words of length m̃ + 2 in X1 respectively X2.

Two orbits O1 = (H
(1)
n )n∈N ∈ Orb(Z(X1)) and O2 = (H

(2)
n )n∈N ∈ Orb(Z(X2))

are called comparable with respect to their path-structure at∞, if both

O1 is embeddable into O2 and O2 is embeddable into O1.

Since a priori the definition of the path-structure at infinity relies heavily

on the graph presentation, we have to show that any topological conjugacy

between two transitive, locally compact countable state Markov shifts respects

this reflexive, symmetric relation. Hence this relation becomes meaningful, even

for non-graph presentations and yields a new conjugacy invariant that forces the

following condition necessary for the existence of a topological conjugacy:

Theorem 4.2: Whenever two transitive, locally compact countable state

Markov shifts (X1, σ1), (X2, σ2) are topologically conjugate, there has to be a bi-

jective map ω: Orb(Z(X1))→ Orb(Z(X2)) between the orbits of their canonical

boundaries (Z(X1), ΘX1) and (Z(X2), ΘX2) such that — in any graph presen-

tation G1 respectively G2 — every ΘX1 -orbit O1 ∈ Orb(Z(X1)) is comparable

with respect to its path-structure at∞ to its image O2 := ω(O1) ∈ Orb(Z(X2)).

Proof: Assume there exists a topological conjugacy γ: X1 → X2, then its

unique extension γ̂: X̂1 → X̂2 onto the canonical compactifications induces a

map from the set of ΘX1-orbits to the set of ΘX2 -orbits which is bijective and

respects the path-structure relation as desired:

First observe that the map ω := πX2
◦ γ̂ ◦ π−1

X1
: Orb(Z(X1)) → Orb(Z(X2))

is well-defined, as γ̂ commutes with the extended shift maps σ̂1, σ̂2.
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As usual, let the canonical boundaries (Z(X1), ΘX1), (Z(X2), ΘX2) be con-

structed via ascending sequences (K
(1)
n )n∈N, (K

(2)
n )n∈N of edge-sets of strongly

connected, finite subgraphs in G1 respectively G2, where K
(1)
1 already comprises

the edges of a shortest loop p in G1. Let O1 = (H
(1)
n )n∈N ∈ Orb(Z(X1)) be

an arbitrary ΘX1-orbit and let O2 = (H
(2)
n )n∈N := ω(O1) ∈ Orb(Z(X2)) be its

image.

Define two points u := p∞.u0u1u2 · · · ∈ X1 being forward-asymptotic to O1

and w := · · ·w−3w−2w−1.p
∞ ∈ X1 being backward-asymptotic to O1. Observe

that any right-(left-)infinite ray forward-(backward-)asymptotic to O1 can be

realized as a subray in u[0,∞) respectively w(−∞,−1]. γ(p∞) = q∞ ∈ Per0|p|(σ2)

yields a finite block q ∈ B|p|(X2) that has a finite coding-length L ∈ |p|N. Thus

the images of u and w under γ look like U = q∞U−L · · ·U−1.U0U1 · · · ∈ X2 and

W = · · ·W−2W−1.W0 · · ·WL−1q
∞ ∈ X2. By construction of u one has

inf{d̂X1(σ1
n(u), z)|z ∈ O1}

n→∞
−→ 0.

Continuity of γ̂ with respect to d̂X1 and d̂X2 forces

inf{d̂X2(σ2
n(γ(u)), z)|z ∈ O2}

n→∞
−→ 0

i.e., U = γ(u) is forward-asymptotic to O2. For every n ∈ N there exists some

index i ∈ N such that the right-infinite ray U[i,∞) is contained in H
(2)
n . Likewise

W = γ(w) is backward-asymptotic to O2 and for every n ∈ N there is an index

i ∈ N with W(−∞,−i] completely running in H
(2)
n .

The preimage of the compact set
⋃

k∈K
(2)
n2

0[k] ( X2 under γ is contained in a

finite union of zero-cylinders in X1 for any n2 ∈ N; so there exists n1 ∈ N such

that

(KH)

γ−1

(
⋃

k∈K
(2)
n2

0[k]

)

⊆
⋃

k∈K
(1)
n1

0[k] and thus,

γ−1

(
⋃

k∈K
(2)
n2

0[k]

)

∩
⋃

e∈E
H

(1)
n1

0[e] = ∅.

Fix n2 ∈ N large enough and let i ∈ N be the minimal index with Ul, W−l ∈

E
H

(2)
n2

for all l ≥ i. Due to the finite coding-lengths of the rays u(−∞,.] and w[.,∞)

containing only finitely many distinct symbols, it is possible to find j ∈ N, j > i

satisfying ul, w−l ∈ E
H

(1)
n1

for all l ≥ j where n1 ∈ N, n1 ≥ n2 is chosen apt to

n2 according to (KH) and

γ((p∞u0 · · ·ui · · ·uj−1uj ]j−i) ⊆ (q∞U−L · · ·U0 · · ·Ui−1Ui]0

γ(i−j [w−jw−j+1 · · ·w−i · · ·w−1p
∞)) ⊆ 0[W−iW−i+1 · · ·W0 · · ·WL−1q

∞).
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Finally there is k ∈ N, k ≥ j such that

γ((p∞u0 · · ·ui · · ·uk−1uk]k−i) ⊆ (q∞U−L · · ·Ui · · ·Uj−1Uj ]j−i

γ(i−k[w−kw−k+1 · · ·w−i · · ·w−1p
∞)) ⊆ i−j [W−jW−j+1 · · ·W−i · · ·WL−1q

∞).

Now compare the path-structure between the vertices t(uk) and i(w−k) within

the subgraph H
(1)
n1 and the path-structure between t(Uj) and i(W−j) within

H
(2)
n2 :

Let Bm := {b1 · · · bm|ukb1 · · · bmw−k ∈ Bm+2(X1)∧∀1 ≤ µ ≤ m : bµ ∈ E
H

(1)
n1

}

(m ∈ N) be the set of all paths of length m connecting t(uk) with i(w−k) that

are contained in H
(1)
n1 . To every block b = b1 · · · bm ∈ Bm construct some point

xb := p∞u0 · · ·ui−1.ui · · ·ukb1 · · · bmw−k · · ·w−1p
∞ ∈ X1. Its image under γ

looks like γ(xb) = q∞U−L · · ·Ui−1.Ui · · ·Uj ? ? ? W−j · · ·WL−1q
∞ ∈ X2 where

Uj , W−j ∈ E
H

(2)
n2

is guaranteed by the choice of i.

Since uj+1 · · ·ukb1 · · · bmw−k · · ·w−j−1 contains only edges from E
H

(1)
n1

, ac-

cording to (KH) no edge of the unknown block can be an element of K
(2)
n2 .

Hence the whole unknown block does consist of edges from E
H

(2)
n2

and the num-

ber of paths of length m+2(k−j) within H
(2)
n2 connecting t(Uj) with i(W−j) has

to be larger or equal to the number of paths uj+1 · · ·ukb1 · · · bmw−k · · ·w−j−1

(b1 · · · bm ∈ Bm) within H
(1)
n1 for any m ∈ N. This shows O1 being embeddable

into O2 with respect to the path-structure at ∞. The same argument for γ−1

instead of γ proves the embeddability of O2 into O1, so O1 and O2 = ω(O1) are

in fact comparable.

Reformulating Theorem 4.2 in terms of automorphisms yields the following

statement about the image of β:

Corollary 4.3: Denote by (Z(X), ΘX) the canonical boundary of some tran-

sitive, locally compact countable state Markov shift (X, σ). A ΘX -orbit O1 ∈

Orb(Z(X)) cannot be mapped onto O2 ∈ Orb(Z(X)) via the extension ϕ̂ of

some automorphism ϕ ∈ Aut(σ) if O1 and O2 are not comparable with respect

to their path-structure at infinity.

The image of the canonical-boundary representation contains only boundary-

automorphisms on (Z(X), ΘX) that respect the path-structure relation, map-

ping all ΘX-orbits to comparable ones.
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Proof: The result immediately follows from Theorem 4.2; just put

(X1, σ1) = (X2, σ2) := (X, σ), γ := ϕ,

G1 = G2 := G some graph presentation

and (K
(1)
n )n∈N = (K

(2)
n )n∈N.
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Figure 2. Pictured are the graph presentations of two locally com-

pact countable state Markov shifts with very limited inner symme-

try. The image of the canonical-boundary representation is thus

fairly small within the group of all boundary-automorphisms.

The canonical boundaries for the two examples of transitive, locally compact

countable state Markov shifts (X, σ) presented in Figure 2 each consist of two

ΘX -orbits of length 2. As before we may apply Theorem 3.6 to get

β(Aut(σ)) ≤ {Id, (12)(34), (13)(24), (14)(23)} .

Since the periodic data at ∞ of both ΘX -orbits are equal, Proposition 3.10

cannot be used to further restrict the image of β. However looking at the
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path-structure at ∞ finally settles the size of the image: We recognize the two

ΘX -orbits as non-comparable to each other; one could say the right half of the

graph is not embeddable into the left half. So following from Corollary 4.3

the image of the canonical-boundary representation is minimal β(Aut(σ)) =

β(〈σ〉) = {Id, ΘX} for both examples.

Cutting in half each of the example graphs in Figure 2 along the upward

directed edge(s) a, b respectively a (duplicating these, such that both halves

contain one copy) yields two pairs of edge shifts — each pair with equal zeta

function, equal canonical boundary and equal periodic data at∞. But still The-

orem 4.2 tells the two subshifts in each pair apart and disproves the existence

of a topological conjugacy between them. This makes the relation ’compara-

bility of the path-structure at ∞’ a useful supplement to the set of conjugacy

invariants.

We remark that removing the edges e1, f1, e
′
1 and f ′

1 from the bottom graph in

Figure 2 yields a new edge shift, which is topologically conjugate to the Markov

shift corresponding to the top graph in Figure 2, i.e. the boundary-orbits of the

right respectively left halves of both edge shifts are comparable with respect to

their path-structure at infinity.

As another consequence following from Corollary 4.3. In general, not every

permutation of some infinite set of periodic points of an arbitrary fixed period,

which is compatible with the shift and which induces a well defined action on

the boundary points, can be extended to an automorphism of the whole Markov

shift.

We denote by Aut(Per0n(σ), σ) the group of all permutations τ on Per0n(σ)

which respect the σ-orbit structure, i.e. τ ◦ σ = σ ◦ τ , as well as the following

obvious necessary conditions: Whenever a sequence (pi ∈ Per0n(σ))i∈N converges

to some boundary point its image sequence (τ(pi))i∈N has to converge to some

boundary point and whenever a sequence (pi ∈ Per0n(σ))i∈N eventually leaves

every compact set in (X, σ), its image (τ(pi))i∈N has to leave eventually every

compact subset.

Now we can ask whether every element of Aut(Per0n(σ), σ) gives rise to an

automorphism of (X, σ). In Example 4.4 below we disprove this for all sets

Per0n(σ) (n ∈ N) for a slight modification of one of the edge shifts from Figure 2.

Example 4.4: The LIFT-hypothesis for subsets of periodic points is not valid

for transitive, locally compact countable state Markov shifts independent of the

size of the period.
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Take the top graph from Figure 2 and add to every vertex i(di) and i(f ′
i) two

self-loops ki, li or k′
i, l

′
i respectively (i ∈ N). This produces a new edge shift

(X, σ).

Consider some permutation τ ∈ SPer0n(σ) on the set of periodic points Per0n(σ)

of least period n ∈ N, which exchanges the two subsets {(kili
n−1)∞|i ∈ N} and

{(k′
il
′
i
n−1

)∞|i ∈ N}:

∀i ∈ N : τ((kili
n−1)∞) := (k′

il
′
i

n−1
)∞, τ((k′

il
′
i

n−1
)∞) := (kili

n−1)∞

and assume σ◦τ = τ ◦σ (τ may act at will on the remaining σ-orbits in Per0n(σ)).

Obviously τ ∈ Aut(Per0n(σ), σ). We claim that such a permutation τ cannot

occur as the restriction of any automorphism ϕ ∈ Aut(σ):

Denote by z1 ∈ Z(X) the right and by z2 ∈ Z(X) the left boundary

point. (Note that now (Z(X), ΘX) consists of two ΘX -orbits, each of length

1.) Due to the convergence d̂((kili
n−1)∞, z1)

i→∞
−→0 and d̂((k′

il
′
i
n−1

)∞, z2)
i→∞
−→0,

to realize ϕ|Per0n(σ) = τ would force the existence of some ϕ ∈ Aut(σ) such

that ϕ̂(z1) = z2. So it suffices to prove O1 := {z1} being non-comparable to

O2 := {z2} concerning the path-structure at ∞.

Using the notation from Definition 4.1, for every ray x[i,∞) and y(−∞,−l], both

asymptotic to O1 and completely contained in H
(1)
n1 , for any edges e, f ∈ E

H
(2)
n2

and every m̃ = m + (j − i) + (k − l) we define:

Be,f (m̃) := {b1 · · · bm̃|eb1 · · · bm̃f ∈ Bm̃+2(X) ∧ ∀1 ≤ µ ≤ m̃ : bµ ∈ E
H

(2)
n2

}

and

Bx[i,j],y[−k,−l]
(m) := {b1 · · · bm|x[i,j]b1 . . . bmy[−k,−l] ∈ Bm̃+2(X)∧

∀1 ≤ µ ≤ m : bµ ∈ E
H

(1)
n1

}.

On the one hand #Be,f (m̃) ≤ 2m̃ independently of e, f ; on the other hand for

large path-lengths m ∈ N there is some constant I ∈ N depending only on the

choice of xj and y−k (I is the minimal distance from t(xj) to i(y−k) minus 1)

satisfying:

#Bx[i,j],y[−k,−l]
(m)

= 2m−I + 2m−I−2(m− I − 2) + 2m−I−5(m− I − 4)(m− I − 3) + · · ·
︸ ︷︷ ︸

≥0

For m > 2(j−i)+(k−l)+I+2 + I − 2 this implies #Be,f (m̃) < #Bx[i,j],y[−k,−l]
(m);

thus O1 cannot be embedded into O2. Following from Corollary 4.3 the exten-

sion of every automorphism acts on Z(X) like the identity and the image of the

canonical-boundary representation is minimal β(Aut(σ)) =
{
IdZ(X)

}
.
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We point out that even though the canonical boundary (two identical ΘX -

orbits) and the periodic data at ∞ (identical Ω-sets for both boundary points)

do not give any restrictions, the automorphism group Aut(σ) acts on every set

Per0n(σ) like a proper subgroup of the full automorphism group Aut(Per0n(σ), σ).

Finally we give a counterexample to the LIFT-hypothesis for ascending se-

quences of compact subshifts. Moreover in our example these compact subshifts

are SFTs; hence disproving at the same time the specialized LIFT-hypothesis

for ascending sequences of SFTs.

Example 4.5: The LIFT-hypothesis for ascending sequences of SFTs is not

valid for transitive, locally compact countable state Markov shifts.

Look at the edge shift (X, σ) corresponding to the bottom graph dis-

played in Figure 2, together with the included, nested sequence of transitive

SFTs ((Xn, σn))n∈N defined via the strongly connected, finite subgraphs

Gn = (Vn, En) with

En := {a, ci, di, ei, fi, b
′
i, c

′
i, d

′
i, e

′
i, f

′
i | i ≤ n} and Vn := {i(e) | e ∈ En}

On every Xn we have an involutoric marker-automorphism ϕn ∈ Aut(σn) swap-

ping left and right; more precisely, ϕn scans a point x ∈ Xn and exchanges any

of the following blocks marked by a:

ac1 · · · cieidi · · · d1a←→ ab′1 · · · b
′
ie

′
id

′
i · · ·d

′
1a

ac1 · · · cifidi · · · d1a←→ ac′1 · · · c
′
if

′
id

′
i · · · d

′
1a
∀i ≤ n.

If we regard Xn as a subset in X , every ϕn induces an automorphism ϕ̃n ∈

Aut(σ) acting only on some finite subgraph/subset of symbols by exchange of

the blocks stated above. Since Xn ⊆ Xn+1 ( X and ϕ̃m|Xn
= ϕ̃n|Xn

= ϕn for

n ≤ m (n, m ∈ N), the sequence (ϕ̃n)n∈N is projective and we may define some

map ϕ̃:
⋃

n∈N
Xn →

⋃

n∈N
Xn putting ϕ̃(x) := ϕ̃n(x) for x ∈ Xn.

However ϕ̃ is not extendible to an automorphism of the whole transitive,

locally compact countable state Markov shift (X, σ): Apparently the union
⋃

n∈N
Xn is dense in X with respect to the usual cylinder-topology and X is

dense in its canonical compactification X̂. So there is at most one continuous

map ϕ̂: X̂ → X̂ satisfying ϕ̂|⋃
n∈N

Xn
= ϕ̃. It is easy to check that this ϕ̂ would

exchange the two ΘX-orbits of the canonical boundary. As we have already

shown above, these are not comparable concerning the path-structure at ∞.

Hence Corollary 4.3 contradicts the existence of ϕ := ϕ̂|X ∈ Aut(σ).
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Thus the sequence (ϕ̃n ∈ Aut(σ))n∈N with ϕ̃n(Xn) = Xn and ϕ̃m|Xn
= ϕ̃n|Xn

for all m ≥ n cannot be extended to some ϕ ∈ Aut(σ) such that ϕ|Xn
=

ϕ̃n|Xn
for n ∈ N and the LIFT-hypothesis does not hold for the SFT-sequence

((Xn, σn))n∈N.
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